Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Immunol ; 12: 677025, 2021.
Article in English | MEDLINE | ID: covidwho-1403470

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global crisis; however, our current understanding of the host immune response to SARS-CoV-2 infection remains limited. Herein, we performed RNA sequencing using peripheral blood from acute and convalescent patients and interrogated the dynamic changes of adaptive immune response to SARS-CoV-2 infection over time. Our results revealed numerous alterations in these cohorts in terms of gene expression profiles and the features of immune repertoire. Moreover, a machine learning method was developed and resulted in the identification of five independent biomarkers and a collection of biomarkers that could accurately differentiate and predict the development of COVID-19. Interestingly, the increased expression of one of these biomarkers, UCHL1, a molecule related to nervous system damage, was associated with the clustering of severe symptoms. Importantly, analyses on immune repertoire metrics revealed the distinct kinetics of T-cell and B-cell responses to SARS-CoV-2 infection, with B-cell response plateaued in the acute phase and declined thereafter, whereas T-cell response can be maintained for up to 6 months post-infection onset and T-cell clonality was positively correlated with the serum level of anti-SARS-CoV-2 IgG. Together, the significantly altered genes or biomarkers, as well as the abnormally high levels of B-cell response in acute infection, may contribute to the pathogenesis of COVID-19 through mediating inflammation and immune responses, whereas prolonged T-cell response in the convalescents might help these patients in preventing reinfection. Thus, our findings could provide insight into the underlying molecular mechanism of host immune response to COVID-19 and facilitate the development of novel therapeutic strategies and effective vaccines.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Leukocytes, Mononuclear/chemistry , Transcriptome , Adult , Aged , Antibodies, Viral/blood , B-Lymphocytes/immunology , Biomarkers/blood , COVID-19/blood , COVID-19/virology , China , Cohort Studies , Female , Humans , Leukocytes, Mononuclear/immunology , Machine Learning , Male , Middle Aged , SARS-CoV-2/physiology , Sequence Analysis, RNA , T-Lymphocytes/immunology , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/immunology
2.
Front Immunol ; 12: 636289, 2021.
Article in English | MEDLINE | ID: covidwho-1150692

ABSTRACT

Although widely prevalent, Lyme disease is still under-diagnosed and misunderstood. Here we followed 73 acute Lyme disease patients and uninfected controls over a period of a year. At each visit, RNA-sequencing was applied to profile patients' peripheral blood mononuclear cells in addition to extensive clinical phenotyping. Based on the projection of the RNA-seq data into lower dimensions, we observe that the cases are separated from controls, and almost all cases never return to cluster with the controls over time. Enrichment analysis of the differentially expressed genes between clusters identifies up-regulation of immune response genes. This observation is also supported by deconvolution analysis to identify the changes in cell type composition due to Lyme disease infection. Importantly, we developed several machine learning classifiers that attempt to perform various Lyme disease classifications. We show that Lyme patients can be distinguished from the controls as well as from COVID-19 patients, but classification was not successful in distinguishing those patients with early Lyme disease cases that would advance to develop post-treatment persistent symptoms.


Subject(s)
Leukocytes, Mononuclear/immunology , Lyme Disease/genetics , Adult , COVID-19/genetics , COVID-19/immunology , Cytokines/genetics , Cytokines/immunology , Female , Follow-Up Studies , Humans , Leukocytes, Mononuclear/chemistry , Lyme Disease/blood , Lyme Disease/immunology , Machine Learning , Male , Middle Aged , Prospective Studies , RNA-Seq
SELECTION OF CITATIONS
SEARCH DETAIL